

ALGORITHMS DEVELOPING &
PYTHON PROGRAMMING

By Dilan Hewage

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

2

First Print: 2021

Algorithms Developing & Python Programming

© Dilan Widumal

ISBN 978-624-98072-0-4

Other Books

Data Communication and Networking

Visit ictnotes.org for more information

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

3

Dear teachers and students,

I am an Advanced Level ICT teacher with more than seven years of experience. I
graduated from the University of Colombo with a Bachelor of Information Technology
degree. I am running my tech startup while teaching my beloved students. With the
background and working with the latest technologies, I always try to give something
beyond the syllabus.

I am pleased to inform you that I have written my second book for the Advanced Level
Examination ICT subject. Getting a good result in ICT subjects is more complex as there
is a gap between the paper and the syllabus. Therefore I tried to cover the missing gaps
between the syllabus and examination paper to support students and teachers to
overcome the challenge and be more thorough on the subject.

Most of us believe it is the most complicated section in the syllabus when it comes to
programming. This myth becomes valid if you are trying to by-hard everything without
understanding. Therefore to understand the subject you must practice by yourself. The
Algorithm Developing and Python Programming book is written to give practical
guidance to students with supporting material through our official website ictnotes.org
and YouTube channel.

I advise you all to select the practicals and spend more time practicing the examples
given in the book.

Best Regards,

Dilan Sir

Note: Please scan the following QR code to the video guide to refer to the book and
complete the practicals.

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

4

Table of Contents

1. PROBLEM-SOLVING PROCESS ... 7

1.1. Understanding the problem (Define the problem) .. 7

1.2. Defining the problem and boundaries ... 7

1.3. Planning solution (Evaluate and select an alternative) 8

1.4. Implementation ... 8

1.5. Explore the top-down and stepwise refinement methodologies 8

2. ALGORITHMS .. 11

2.1. Algorithms .. 11

2.2. Flow charts .. 11

2.3. Pseudo codes ... 15

2.4. Hand traces.. 16

3. PROGRAMMING PARADIGMS ... 17

3.1. Evolution of programming languages ... 17

3.2. Programming paradigms ... 20

4. PROGRAM TRANSLATORS .. 25

4.1. Need of program translation. .. 25

4.2. Source program ... 25

4.3. Object program ... 25

4.4. Difference Between Source Program and Object Program 26

4.5. Program translators ... 27

4.6. Linkers .. 30

5. INTEGRATED DEVELOPMENT ENVIRONMENT .. 32

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

5

5.1. Basic features of IDE. .. 32

5.2. IDE Common Features ... 32

5.3. How to Install Python IDE ... 34

5.4. Instructions to use ... 35

5.5. Debugging facilities ... 37

6. USES AN IMPERATIVE PROGRAMMING LANGUAGE 38

6.1. Structure of a program .. 38

6.2. Comments ... 38

6.3. Constants and Variables ... 39

6.4. Primitive data types .. 40

6.5. Python Operators .. 42

6.6. Operator precedence ... 46

6.7. Input / output ... 47

7. CONTROL STRUCTURES .. 48

7.1. Sequence ... 48

7.2. Selection ... 48

7.3. Repetition ... 50

8. SUBPROGRAMS IN PROGRAMMING ... 53

8.1. Types of subprograms .. 53

8.2. Building functions .. 56

8.3. Scope of Identifiers .. 57

8.4. Function parameters and using keyword return ... 59

9. USES DATA STRUCTURES IN PROGRAMS ... 63

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

6

9.1. Data structures .. 63

9.2. Strings ... 63

9.3. Python List .. 69

9.4. Tuples .. 78

9.5. Dictionary ... 85

9.6. Basic file operations .. 94

10. MANAGES DATA IN DATABASES .. 99

10.1. Connecting to a database ... 99

10.2. Retrieve data .. 100

10.3. Primary Key .. 102

10.4. Add, modify and delete data ... 103

10.5. Python MySQL ... 108

11. SEARCHES AND SORTS DATA .. 115

11.1. Searching techniques ... 115

11.2. Sorting techniques ... 116

12. PYTHON FUNCTION .. 118

12.1. Python sum() ... 120

12.2. Python max() ... 120

13. MODEL QUESTIONS .. 125

Exercise 1: .. 125

Exercise 2: .. 126

Exercise 3: .. 127

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

7

1. PROBLEM-SOLVING PROCESS

Problem-solving is the act of defining a problem;
determining the cause of the problem; identifying,
prioritizing, and selecting alternatives for a
solution; and implementing a solution.

1.1. Understanding the
problem (Define the problem)

Diagnose the situation so that focus is on the
problem, not just its symptoms. Helpful problem-
solving techniques include using flowcharts to identify the expected steps of a process
and cause-and-effect diagrams to define and analyze root causes.

The sections below help explain key problem-solving steps. These steps support the
involvement of interested parties, factual information, comparison of expectations to
reality, and a focus on the root causes of a problem.

It would be best if began by:

• Review and document how processes currently work (i.e., who does what, with
what information, using what tools, communicating with organizations and
individuals, in what time frame, using what format).

• Evaluate the possible impact of new tools and revised policies in developing the
"what should be" model.

1.2. Defining the problem and boundaries

Postpone the selection of one solution until several problem-solving alternatives are
identified. Considering multiple options can significantly enhance the value of your ideal
solution. Once you have decided on the "what should be" model, this target standard
becomes the basis for developing a road map for investigating alternatives.
Brainstorming and team problem-solving techniques are both valuable tools in this stage
of problem-solving.

Many alternative solutions to the problem should be generated before the final
evaluation. In most cases first suggested solution is taken without considering the

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

17

3. PROGRAMMING PARADIGMS

3.1. Evolution of programming languages

Programming Language is indeed the fundamental unit of today's tech world. It is
considered the set of commands and instructions that we give to the machines to perform
a particular task.

For example, give some instructions to add two numbers. The machine will do it for us
and tell us the correct answer accordingly. However, do you know that Programming
Languages have a long and rich history of their evolution? Moreover, with a similar
concern, here in this chapter, we will look at the development of Programming
Languages over the period.

In the computer world, we have about 500+ programming languages that having their
syntax and features. Moreover, suppose you type who is the father of the computer. In
that case, the search engine will show you the result of Charles Babbage, but the father
of the computer did not write the first code. It was Ada Lovelace who wrote the first-
ever computer programming language, and the year was 1883.

1883: The Journey starts from here…!!

• In the early days, Charles Babbage had made the device. However, he was
confused about how to give instructions to the machine. Then Ada Lovelace
wrote the instructions for the analytical engine.

• Charles Babbage made the device, and Ada Lovelace wrote the code for
computing Bernoulli's number.

• First time in history that the capability of computer devices was judged.

1949: Assembly Language

• It is a type of low-level language.
• It mainly consists of instructions (kind of symbols) that only machines could

understand.
• In today's time, assembly language is also used in real-time programs such as

simulation flight navigation systems and medical equipment, e.g., Fly-by-wire
(FBW) systems.

• It is used to create computer viruses.

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

18

1952: Auto code

• Developed by Alick Glennie.
• The first compiled computer programming

language
• COBOL and FORTRAN are the languages

referred to as Autocode.

1957: FORTRAN

• Developers are John Backus and IBM.
• It was designed for numeric computation and

scientific computing.
• Software for NASA probes voyager-1 (space

probe) and voyager-2 (space probe) was initially written in FORTRAN 5.

1958: ALGOL

• ALGOL stands for ALGOrithmic Language.
• The initial phase of the most popular programming languages of C, C++, and

JAVA
• It was also the first language implementing the nested function and has a simple

syntax than FORTRAN.

1959: COBOL

• It stands for Common Business-Oriented Language.
• In 1997, 80% of the world's business ran on Cobol.
• The US internal revenue service scrambled its path to COBOL-based IMF

(individual master file) in order to pay the tens of millions of payments
mandated by the coronavirus aid, relief, and economic security.

1964: BASIC

• It stands for beginners All-purpose
symbolic instruction code.

• In 1991 Microsoft released Visual
Basic, an updated version of Basic

• The first microcomputer version of
Basic was co-written by Bill
Gates, Paul Allen, and Monte
Davidoff for their newly-formed
company, Microsoft.

Figure 2: Alick Glennie

Figure 3: Paul Allen (left) and Bill Gates in 1981, surrounded
by some of the computers that ran their version of BASIC

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

25

4. PROGRAM TRANSLATORS

4.1. Need of program translation.

Modern programming languages attempt to give programmers the capability of doing
complex things with a computer while writing instructions for the computer in a
language close to their natural language. For example, most programmers are
comfortable enough with the standard mathematical language to use expressions such as
1
3
𝑙𝑙𝑙𝑙ℎ (the volume of a pyramid with base length 𝑙𝑙, base width 𝑙𝑙, and height ℎ). They

do not care to know the sequence of machine instructions that are needed to evaluate this
expression, much less the machine coding for those instructions.

Also, when a programmer wants to specify a numerical value, they prefer to specify it
as a string of decimal digits rather than machine binary code. Furthermore, a programmer
has no interest in the character coding used for the decimal digits. Thus, programming
languages require powerful mechanisms for translating a programmer's language into a
language that the machine understands.

4.2. Source program

Source program or source code is the original program written by the programmer. It is
a text-based document. In the source program, the programmer writes the instructions
the computer should perform. He writes these instructions using a computer
programming language such as Java, C#.NET, etc. Programmers can easily understand
and read the syntax of these programming languages. Furthermore, the written source
code has to be according to the correct conventions and rules of that particular
programming language.

4.3. Object program

Object Program or the object code is an executable machine file. The computer or the
machine does not understand the source program or the source code. Therefore, the
compiler converts the source program into an object program. In other words, the object
program is the output of the compiler. It has instructions for the machine in the form of
binary digits. Therefore, it is a machine-readable code. As the machine understands this
object program, it is a machine-executable code. Additionally, suppose the programmer

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

32

5. INTEGRATED DEVELOPMENT
ENVIRONMENT

5.1. Basic features of IDE.

IDEs provide interfaces for users to write code, organize text groups, and automate
programming redundancies more fundamentally. However, instead of a bare-bones code
editor, IDEs combine the functionality of multiple programming processes into one.
Some IDEs focus on a specific programming language, such as Python or Java, but many
have cross-language capabilities. IDEs often possess or allow the insertion of
frameworks and element libraries to build upon base-level code in terms of text editing
capabilities.

Throughout the writing process, users create hierarchies within the IDE and assign code
groups to their designated region. From these, groupings can be strung together,
compiled, and built. Most IDEs come with built-in debuggers, which activate upon the
build. Visual debuggers are a substantial benefit of many IDEs. If any bugs or errors are
spotted, users are shown which parts of the code have problems.

Key Benefits of Integrated Development Environments

• Serves as a single environment for most, if not all, of a developer's needs, such
as version control systems, debugging tools, and Platform-as-a-Service.

• Code completion capabilities improve programming workflow.
• Automatically checks for errors to ensure top-quality code.
• Refactoring capabilities allow developers to make comprehensive and mistake-

free renaming changes.
• Maintain a smooth development cycle.
• Increase developer efficiency and satisfaction.
• Deliver top-quality software on schedule.

5.2. IDE Common Features

Text editor

Virtually every IDE will have a text editor designed to write and manipulate source code.
Some tools may have visual components to drag and drop front-end components, but
most have a simple interface with language-specific syntax highlighting.

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

33

Debugger

Debugging tools assist users in identifying and remedying errors within source code.
They often simulate real-world scenarios to test functionality and performance.
Programmers and software engineers can usually test the various code segments and
identify errors before the application is released.

Compiler

Compilers are components that translate programming language into a form machines
can process, such as binary code. First, the machine code is analyzed to ensure its
accuracy. The compiler then parses and optimizes the code to optimize performance.

Code completion

Code complete features assist programmers by intelligently identifying and inserting
standard code components. These features save developers time writing code and reduce
the likelihood of typos and bugs.

Programming language support

IDEs are typically specific to a single programming language, though several also offer
multi-language support. As such, the first step is to figure out which languages you will
be coding in and narrow your prospective IDE list down accordingly. Examples include
Ruby, Python, and Java IDE tools.

Integrations and plugins

With the name integrated development environment, it is no surprise that integrations
need to be considered when looking at IDEs. Your IDE is your development portal, so
incorporating all your other development tools will improve development workflows
and productivity. However, poor integrations can cause numerous issues and lead to
many headaches, so make sure you understand how well a potential IDE fits into your
ecosystem of existing tools.

Introduction to IDLE - Default Python IDE

IDLE stands for Integrated Development and Learning Environment. The story behind
the name IDLE is similar to Python. Guido Van Rossum named Python after the British
comedy group Monty Python while the name IDLE was chosen to pay tribute to Eric
Idle, one of Monty Python's founding members. IDLE comes bundled with the default

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

38

6. USES AN IMPERATIVE PROGRAMMING
LANGUAGE

6.1. Structure of a program

6.2. Comments

A hash sign (#) that is not inside a string literal is the beginning of a comment. All
characters after the #, up to the end of the physical line, are part of the comment and the
Python interpreter ignores them.

Comments can be used,

• To explain Python code.
• To make the code more readable.
• To prevent execution when testing code.

A comment is a piece of text within a program that is not executed. It can be used to
provide additional information to aid in understanding the code.

This is the first comment
Print ("Hello, students!") # This is the second comment

The above code produces the following results –

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

39

Hello, students!

You can type a comment on the same line after a statement or expression –

name = "Kavindu" # This is another comment

Python does not have a multiple-line commenting feature. You have to comment on each
line individually as follows –

This is a comment.
This is a comment, too.
This is a comment, too.

6.3. Constants and Variables

Variables are nothing but reserved memory locations to store values. It means that when
you create a variable, you reserve some space in the memory. Based on the data type of
a variable, the interpreter allocates memory and decides what can be stored in the
reserved memory. Therefore, by assigning different data types to the variables, you can
store integers, decimals, or characters in these variables

Assigning Values to Variables

Python variables do not need an explicit declaration to reserve memory space. The
declaration happens automatically when you assign a value to a variable. The equal sign
(=) is used to assign values to variables.

The operand to the left of the "=" operator is the variable's name. The operand to the
right of the "=" operator is the value stored in the variable.

Output: Here, 100, 1000.0 and
“Janaka” are the values assigned to
counter, miles, and name variables,
respectively. The code produces the
following result

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

48

7. CONTROL STRUCTURES

Control Structures are just a way to specify the flow of control in programs. Any
algorithm or program can be more precise and understood if they use self-contained
modules called logic or control structures. It analyzes and chooses in which direction a
program flows based on specific parameters or conditions. There are three basic types
of logic, or flow of control, known as:

1. Sequence logic, or sequential flow
2. Selection logic, or conditional flow
3. Iteration logic, or repetitive flow

7.1. Sequence

Sequential execution is when statements are executed one after
another in order. You don't need to do anything more for this to
happen. Sequential statements are a set of statements whose
execution process occurs in a sequence. The problem with
sequential statements is that if the logic has broken in any one of
the lines, then the complete source code execution will break.

This is a Squential statement
a = 20
b = 10
c = a – b
print(“Subtraction is : “, c)

7.2. Selection

Decision-making is anticipating conditions occurring while executing the program and
specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or FALSE as
an outcome. You need to determine which action to take and which statements to execute
if the outcome is TRUE or FALSE otherwise.

S l ti It ti S

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

49

Following is the general form of a typical decision-making structure found in most of
the programming languages –

Python supports the usual logical conditions from mathematics:

• Equals: a == b
• Not Equals: a != b
• Less than: a < b
• Less than or equal to a <= b
• Greater than: a > b
• Greater than or equal to a >= b

These conditions can be used in several ways, most commonly in "if statements" and
loops. An "if statement" is written by using the if keyword.

If statement:

a = 33
b = 200
if b > a:
 print("b is greater than a")

Note: Python relies on indentation (whitespace at the beginning of a line) to define the
scope in the code. Other programming languages often use curly brackets for this
purpose. If statement, without indentation (will raise an error):

a = 33
b = 200

Figure 4: Selection control structure

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

63

9. USES DATA STRUCTURES IN
PROGRAMS

9.1. Data structures

The basic Python data structures in Python include list, set, tuples, and dictionary. Each
of the data structures is unique in its way. Data structures are “containers” that organize
and group data according to type.

The data structures differ based on mutability and order. Mutability refers to the ability
to change an object after its creation. Mutable objects can be modified, added, or deleted
after they’ve been created, while immutable objects cannot be modified after their
creation. Order, in this context, relates to whether the position of an element can be used
to access the element.

9.2. Strings

Strings in Python are surrounded by either single quotation marks or double quotation
marks.

‘hello’ is the same as “hello”.

You can display a string literal with the print() function:

Strings are Arrays

Example: Get the character at position 1 (remember that the first character has the
position 0):

Output

 Output

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

64

Looping Through a String

Since strings are arrays, we can loop through the characters in a string with a for a loop.

Loop through the letters in the word “banana”:

String Length

Example: The len() function returns the length of a string:

Check String

Check if “free” is present in the following text:

Example: Print only if “free” is present:

Slicing

You can return a range of characters by using the slice syntax. Specify the start index
and the end index, separated by a colon, to return a part of the string. Example: Get the
characters from position 2 to position 5 from “Hello, World!” string:

Output

Output

Output

Output

Output

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

99

10. MANAGES DATA IN DATABASES

10.1. Connecting to a database

Install MySQL Driver

• Python needs a MySQL driver to access the MySQL database.
• We will use the driver "MySQL Connector".
• We recommend that you use PIP to install "MySQL Connector".
• PIP is most likely already installed in your Python environment.
• Navigate your command line to the location of PIP, and type the following:
• Download and install "MySQL Connector":
• C:\Users\Your Name\AppData\Local\Programs\Python\Python36-

32\Scripts>python -m pip install mysql-connector-python
• Now you have downloaded and installed a MySQL driver.

Test MySQL Connector

To test if the installation was successful, or if you already have "MySQL Connector"
installed, create a Python page with the following content:

import mysql.connector

If the above code was executed with no errors, "MySQL Connector" is installed and
ready to be used.

Create Connection

Start by creating a connection to the database. Use the username and password from your
MySQL database:

Note: Before you read this section, its is recommended to revise / learn My SQL basics,
otherwise this chapter would not be clear for you. Here I’ve covered only basic Python

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

100

import mysql.connector

mydb = mysql.connector.connect(
 host="localhost",
 user="yourusername",
 password="yourpassword"
)

print(mydb)

10.2. Retrieve data

Creating a Database

To create a database in MySQL, use the "CREATE DATABASE" statement:

Example: create a database named "mydatabase":

import mysql.connector

mydb = mysql.connector.connect(
 host="localhost",
 user="yourusername",
 password="yourpassword"
)

mycursor = mydb.cursor()

mycursor.execute("CREATE DATABASE mydatabase")

Check if Database Exists

You can check if a database exist by listing all databases in your system by using the
"SHOW DATABASES" statement:

Example: Return a list of your system's databases:

import mysql.connector

mydb = mysql.connector.connect(
 host="localhost",
 user="yourusername",
 password="yourpassword"
)

mycursor = mydb.cursor()

mycursor.execute("SHOW DATABASES")

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

115

11. SEARCHES AND SORTS DATA

11.1. Searching techniques

Searching for data stored in different data structures is a crucial part of pretty much every
single application. There are many different algorithms available to utilize when
searching. Each has other implementations and relies on various data structures to get
the job done.

Choosing a specific algorithm for a given task is a crucial skill for developers. It can
mean the difference between a fast, reliable and stable application and an application
that crumbles from a simple request.

1. Membership Operators
2. Sequential / Linear Search
3. Binary Search
4. Jump Search
5. Fibonacci Search
6. Exponential Search
7. Interpolation Search

Here in this chapter, we are going to discuss only Sequential search only

Sequential search

When data items are stored in a collection such as a list, we say that they have a linear
or sequential relationship. Each data item is stored in a position relative to the others. In
Python lists, these relative positions are the index values of the individual items. Since
these index values are ordered, we can visit them in sequence. This process gives rise to
our first searching technique, the sequential search.

The diagram below shows how this search works. Starting at the first item in the list, we
simply move from item to item, following the underlying sequential ordering until we
find what we are looking for or run out of items. If we run out of items, we have
discovered that the item we were searching for was not present.

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

116

The Python implementation for this algorithm is shown below. The function needs the
list and the item we are looking for and returns a boolean value as to whether it is present.
Remember in practice, we would use the Python in operator for this purpose, so you can
think of the below algorithm as what we would do if in were not provided for us.

11.2. Sorting techniques

Sorting refers to arranging data in a particular format. Sorting algorithm specifies the
way to arrange data in a particular order. Most common orders are in numerical or
lexicographical order.

The importance of sorting lies in the fact that data searching can be optimized to a very
high level, if data is stored in a sorted manner. Sorting is also used to represent data in
more readable formats. Below we see five such implementations of sorting in python.

1. Bubble Sort
2. Merge Sort
3. Insertion Sort
4. Shell Sort
5. Selection Sort

Bubble sort

Bubble Sort is the simplest sorting algorithm that repeatedly swaps the adjacent elements
if they are in the wrong order. It is a comparison-based algorithm in which each pair of
adjacent elements is compared and the elements are swapped if they are not in order.

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

125

13. MODEL QUESTIONS

Exercise 1: Given two integer numbers, return their product. If the product is
greater than 1000, then return their sum

Solution:

IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

126

Exercise 2: Given a range of the first 10 numbers, Iterate from the start number
to the end number, and In each iteration, print the sum of the current number
and previous number

Expected Output

Solution 1 without function

Solution 2 with function

 IC
TNOTES.O

RG

SAMPLE
 PDF

Algorithms Developing & Python Programming | DILAN HEWAGE

141

ABd1234@1

Hints:

In case of input data being supplied to the question, it should be assumed to be a
console input.

Solutions:

import re
value = []
items=[x for x in input().split(',')]
for p in items:
 if len(p)<6 or len(p)>12:
 continue
 else:
 pass
 if not re.search("[a-z]",p):
 continue
 elif not re.search("[0-9]",p):
 continue
 elif not re.search("[A-Z]",p):
 continue
 elif not re.search("[$#@]",p):
 continue
 elif re.search("\s",p):
 continue
 else:
 pass
 value.append(p)
print (",".join(value))

Exercise 26: Define a class with a generator that can iterate the numbers,
which are divisible by 7, between a given range 0 and n.

IC
TNOTES.O

RG

SAMPLE
 PDF

	1. PROBLEM-SOLVING PROCESS
	1.1. Understanding the problem (Define the problem)
	1.2. Defining the problem and boundaries
	1.3. Planning solution (Evaluate and select an alternative)
	1.4. Implementation
	1.5. Explore the top-down and stepwise refinement methodologies
	Modularization
	Concept of Modularization
	Top-down design and stepwise refinement
	Structure charts

	2. ALGORITHMS
	2.1. Algorithms
	2.2. Flow charts
	2.3. Pseudo codes
	2.4. Hand traces

	3. PROGRAMMING PARADIGMS
	3.1. Evolution of programming languages
	3.2. Programming paradigms
	Imperative languages
	Procedural programming paradigm
	Object-oriented programming
	Declarative languages

	4. PROGRAM TRANSLATORS
	4.1. Need of program translation.
	4.2. Source program
	4.3. Object program
	4.4. Difference Between Source Program and Object Program
	4.5. Program translators
	Interpreters
	Compilers
	Comparison of compilers and interpreters
	Hybrid approach

	4.6. Linkers

	5. INTEGRATED DEVELOPMENT ENVIRONMENT
	5.1. Basic features of IDE.
	5.2. IDE Common Features
	Text editor
	Debugger
	Compiler
	Code completion
	Programming language support
	Integrations and plugins
	Introduction to IDLE - Default Python IDE

	5.3. How to Install Python IDE
	5.4. Instructions to use
	Opening and saving files
	Compiling, executing programs

	5.5. Debugging facilities

	6. USES AN IMPERATIVE PROGRAMMING LANGUAGE
	6.1. Structure of a program
	6.2. Comments
	6.3. Constants and Variables
	Assigning Values to Variables
	Multiple Assignment

	6.4. Primitive data types
	Numbers
	String
	List
	Tuple
	Dictionary

	6.5. Python Operators
	Arithmetic operators
	Assignment operators
	Comparison operators
	Logical operators
	Identity operators
	Membership operators
	Bitwise operators

	6.6. Operator precedence
	6.7. Input / output
	Input from keyboard
	Output to standard devices

	7. CONTROL STRUCTURES
	7.1. Sequence
	7.2. Selection
	If statement:
	Elif
	Else

	7.3. Repetition
	While Loop
	For Loop
	Nested Loop

	8. SUBPROGRAMS IN PROGRAMMING
	8.1. Types of subprograms
	Built-in
	User-defined

	8.2. Building functions
	The pieces of a function:
	Calling a function

	8.3. Scope of Identifiers
	8.4. Function parameters and using keyword return
	Parameter lists
	value-returning functions

	9. USES DATA STRUCTURES IN PROGRAMS
	9.1. Data structures
	9.2. Strings
	Strings are Arrays
	Looping Through a String
	String Length
	Check String
	Slicing
	Slice From the Start
	Slice To the End
	Negative Indexing
	Upper Case
	Lower Case
	Remove Whitespace
	Replace String
	Split String
	String Concatenation
	String Format
	Escape Character

	9.3. Python List
	Create a List:
	Access list items
	Negative Indexing
	Range of Indexes
	Range of Negative Indexes
	Check if Item Exists
	Change Item Value
	Change a Range of Item Values
	Insert Items
	Python - Add List Items
	Insert Items
	Extend List
	Add Any Iterable
	Python - Remove List Items
	Remove Specified Index
	Clear the List
	Python - Loop Lists
	Loop Through the Index Numbers
	Using a While Loop
	Looping Using List Comprehension
	Sorting a List

	9.4. Tuples
	Tuple Items
	Tuple Length
	Create Tuple with One Item
	Tuple Items - Data Types
	type()
	The tuple() Constructor
	Access Tuple Items
	Negative Indexing
	Range of Indexes
	Range of Negative Indexes
	Check if Item Exists
	Update Tuple
	Change Tuple Values
	Add Items
	Remove Items
	Loop Through a Tuple
	Loop Through the Index Numbers
	Using a While Loop

	9.5. Dictionary
	Dictionary Items
	Ordered or Unordered?
	Changeable
	Duplicates Not Allowed
	Dictionary Length
	Dictionary Items - Data Types
	type()
	Accessing Items
	Get Keys
	Get Values
	Get Items
	Check if Key Exists
	Change Values
	Update Dictionary
	Adding Items
	Update Dictionary
	Removing Items
	Loop Through a Dictionary

	9.6. Basic file operations
	Open a File on the Server
	Read Only Parts of the File
	Read Lines
	Close Files
	Write to an Existing File
	Create a New File
	Delete a File
	Check if File exists:
	Delete Folder

	10. MANAGES DATA IN DATABASES
	10.1. Connecting to a database
	Install MySQL Driver
	Test MySQL Connector
	Create Connection

	10.2. Retrieve data
	Creating a Database
	Check if Database Exists
	Creating a Table
	Check if Table Exists

	10.3. Primary Key
	10.4. Add, modify and delete data
	Insert Into Table
	Insert Multiple Rows
	Get Inserted ID
	Select From a Table
	Selecting Columns
	Using the fetchone() Method
	Select With a Filter
	Wildcard Characters

	10.5. Python MySQL
	Sort the Result
	ORDER BY DESC
	Delete Record
	Delete a Table
	Drop Only if Exist
	Update Table
	Limit the Result
	Start From Another Position
	Python Joins
	LEFT JOIN
	RIGHT JOIN

	11. SEARCHES AND SORTS DATA
	11.1. Searching techniques
	Sequential search

	11.2. Sorting techniques
	Bubble sort

	12. PYTHON FUNCTION
	12.1. Python sum()
	12.2. Python max()
	max() with iterable arguments
	User Defined Functions
	Creating a Function
	Calling a Function
	Arguments
	Parameters or Arguments?
	Number of Arguments
	Arbitrary Arguments, *args
	Keyword Arguments
	Default Parameter Value
	Passing a List as an Argument
	Return Values
	The pass Statement

	13. MODEL QUESTIONS
	Reference

