
Table of Contents

1. PROBLEM-SOLVING PROCESS .. 4
1.1. Understanding the problem (Define the problem) .. 4
1.2. Defining the problem and boundaries .. 4
1.3. Planning solution (Evaluate and select an alternative) .. 5
1.4. Implementation (Implement and follow up on the solution) 5
1.5. Explore the top-down and stepwise refinement methodologies 5

2. ALGORITHMS .. 8
2.1. Algorithms ... 8
2.2. Flow charts .. 9
2.3. Pseudo codes .. 12
2.4. Hand traces ... 12

3. PROGRAMMING PARADIGMS .. 14
3.1. Evolution of programming languages .. 14
3.2. Programming paradigms .. 18

4. PROGRAM TRANSLATORS .. 21
4.1. Need of program translation. .. 21
4.2. Source program ... 21
4.3. Object program ... 21
4.4. Program translators ... 24
4.5. Linkers .. 25

5. INTEGRATED DEVELOPMENT ENVIRONMENT... 27
5.1. Basic features of IDE. ... 27
5.2. IDE Common Features ... 27
5.3. How to Install Python IDE ... 29
5.4. Instructions to use .. 30
5.5. Debugging facilities .. 31

6. USES AN IMPERATIVE PROGRAMMING LANGUAGE ... 31
6.1. Structure of a program ... 31
6.2. Comments ... 31
6.3. Constants and Variables .. 33
6.4. Primitive data types .. 34
6.5. Python Operators ... 36
6.6. Operator precedence ... 42
6.7. Input / output .. 44

7. CONTROL STRUCTURES ... 45
7.1. Sequence .. 45
7.2. Selection ... 45
7.3. Repetition .. 46

8. SUBPROGRAMS IN PROGRAMMING ... 50
8.1. Types of subprograms .. 50
8.2. Building functions ... 52
8.3. Scope of Identifiers .. 53

ict
no

tes
.or

g

8.4. Function parameters and using keyword return ... 56
9. USES DATA STRUCTURES IN PROGRAMS .. 59

9.1. Data structures .. 59
9.2. Strings ... 59
9.3. Python List ... 65
9.4. Tuples .. 74
9.5. Dictionary .. 80

10. MANAGES DATA IN DATABASES ... 93
10.1. Connecting to a database ... 93
10.2. Retrieve data .. 94
10.3. Add, modify and delete data ... 98
10.4. Python MySQL ... 103

11. SEARCHES AND SORTS DATA ... 110
11.1. Searching techniques ... 110
11.2. Sorting techniques .. 110

12. PYTHON FUNCTION ... 110
12.1. Python sum() .. 110
12.2. Python max() .. 113
12.3. Parameters or Arguments? ... 115

13. MODEL QUESTIONS ... 119

ict
no

tes
.or

g

1. PROBLEM-SOLVING PROCESS

Problem-solving is the act of defining a problem;
determining the cause of the problem; identifying,
prioritizing, and selecting alternatives for a solution; and
implementing a solution.

1.1. Understanding the problem
(Define the problem)

Diagnose the situation so that focus is on the problem, not just its symptoms. Helpful problem-
solving techniques include using flowcharts to identify the expected steps of a process and

cause-and-effect diagrams to define and analyze root causes.

The sections below help explain key problem-solving steps. These steps support the
involvement of interested parties, factual information, comparison of expectations to reality,
and a focus on the root causes of a problem.

It would be best if began by:

• Review and document how processes currently work (i.e., who does what, with what
information, using what tools, communicating with organizations and individuals, in
what time frame, using what format).

• Evaluate the possible impact of new tools and revised policies in developing the "what
should be" model.

1.2. Defining the problem and boundaries

Postpone the selection of one solution until several problem-solving alternatives are identified.
Considering multiple options can significantly enhance the value of your ideal solution. Once
you have decided on the "what should be" model, this target standard becomes the basis for
developing a road map for investigating alternatives. Brainstorming and team problem-solving
techniques are both valuable tools in this stage of problem-solving.

Many alternative solutions to the problem should be generated before the final evaluation. In
most cases first suggested solution is taken without considering the alternative. That would
be an issue in getting results as we expected. In that case, we miss the potential to learn
something new that will allow for real improvement in the problem-solving process.

ict
no

tes
.or

g

3. PROGRAMMING PARADIGMS

3.1. Evolution of programming languages

Programming Language is indeed the fundamental unit of today's tech world. It is considered
the set of commands and instructions that we give to the machines to perform a particular
task.

For example, give some instructions to add two numbers. The machine will do it for us and
tell us the correct answer accordingly. However, do you know that Programming Languages
are having a long and rich history of their evolution? Moreover, with a similar concern, here in
this article, we will look at the evolution of Programming Languages over the period.

In the computer world, we have about 500+ programming languages that having their syntax
and features. Moreover, suppose you type who is the father of the computer. In that case, the
search engine will show you the result of Charles Babbage, but the father of the computer did
not write the first code. It was Ada Lovelace who has written the first-ever computer
programming language, and the year was 1883.

1883: The Journey starts from here…!!

• In the early days, Charles Babbage had made the device. However, he was confused
about how to give instructions to the machine. Then Ada Lovelace wrote the
instructions for the analytical engine.

• Charles Babbage made the device, and Ada Lovelace wrote the code for computing
Bernoulli's number.

• First time in history that the capability of computer devices was judged.

1949: Assembly Language

• It is a type of low-level language.
• It mainly consists of instructions (kind of symbols) that only machines could

understand.
• In today's time, assembly language is also used in real-time programs such as

simulation flight navigation systems and medical equipment, e.g., Fly-by-wire (FBW)
systems.

• It is used to create computer viruses.

1952: Autocode

• Developed by Alick Glennie.
• The first compiled computer programming language
• COBOL and FORTRAN are the languages referred to as Autocode.

1957: FORTRAN

ict
no

tes
.or

g

• Python shell with syntax highlighting,
• Multi-window text editor,
• Code autocompletion,
• Intelligent indenting,
• Program animation and stepping, which allows one line of code to run at a time

helpful for debugging,
• Persistent breakpoints,
• Finally, Call stack visibility.

5.3. How to Install Python IDE

Below is a step by step process on how to download and install Python on Windows:

Step 1) To download and install Python, visit
the official website of Python
https://www.python.org/downloads/ and
choose your version. We have chosen
Python version 3.6.3

Step 2) Once the download is completed,
run the .exe file to install Python. Now click
on Install Now.

Step 3) You can see Python installing at this
point.

ict
no

tes
.or

g

/ Division Divides left-hand operand by right hand
operand

b / a = 2

% Modulus Divides left-hand operand by right-hand
operand and return the remainder

b % a = 0

** Exponent Performs exponential (power) calculation on
operators

a**b =10 to the power
20

// Floor Division - The division of operands where
the result is the quotient in which the digits
after the decimal point are removed. But if one
of the operands is negative, the result is
floored, i.e., rounded away from zero (towards
negative infinity) −

9//2 = 4 and 9.0//2.0 =
4.0, -11//3 = -4, -11.0//3
= -4.0

Assignment operators

Operator Description Example

= Assigns values from right side operands to
left side operand

c = a + b assigns value
of a + b into c

+= Add AND It adds the right operand to the left operand
and assigns the result to the left operand

c += a is equivalent to c
= c + a

-= Subtract AND It subtracts the right operand from the left
operand and assigns the result to the left
operand

c -= a is equivalent to c
= c - a

*= Multiply AND It multiplies right operand with the left
operand and assign the result to left operand

c *= a is equivalent to c
= c * a

ict
no

tes
.or

g

 print 'Current Letter :', letter

fruits = ['banana', 'apple', 'mango']
for fruit in fruits: # Second Example
 print 'Current fruit :', fruit

print "Good bye!"

When the above code is executed, it produces the following result −

Current Letter : P
Current Letter : y
Current Letter : t
Current Letter : h
Current Letter : o
Current Letter : n
Current fruit : banana
Current fruit : apple
Current fruit : mango
Good bye!

Nested Loop

Python programming language allows to use one loop inside another loop. Following section
shows few examples to illustrate the concept.

for iterating_var in sequence:
 for iterating_var in sequence:
 statements(s)
 statements(s)

The syntax for a nested while loop statement in Python programming language is as follows
−

while expression:
 while expression:
 statement(s)
 statement(s)

A final note on loop nesting is that you can put any type of loop inside of any other type of
loop. For example a for loop can be inside a while loop or vice versa.

The following program uses a nested for loop to find the prime numbers from 2 to 100 –

#!/usr/bin/python

i = 2
while(i < 100):
 j = 2
 while(j <= (i/j)):
 if not(i%j): break

ict
no

tes
.or

g

Example: This example returns the items from the beginning to, but NOT included, "kiwi":

thistuple =
("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[:4])

By leaving out the end value, the range will go on to the end of the list:

Example: This example returns the items from "cherry" and to the end:

thistuple =
("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[2:])

Range of Negative Indexes

Specify negative indexes if you want to start the search from the end of the tuple:

Example: This example returns the items from index -4 (included) to index -1 (excluded)

thistuple =
("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[-4:-1])

Check if Item Exists

To determine if a specified item is present in a tuple use the in keyword:

Example; Check if "apple" is present in the tuple:

thistuple = ("apple", "banana", "cherry")
if "apple" in thistuple:
 print("Yes, 'apple' is in the fruits tuple")

Update Tuple

Tuples are unchangeable, meaning that you cannot change, add, or remove items once the
tuple is created.

Change Tuple Values

Once a tuple is created, you cannot change its values. Tuples are unchangeable,

or immutable as it also is called.

But there is a workaround. You can convert the tuple into a list, change the list, and convert
the list back into a tuple.

ict
no

tes
.or

g

